© 2018 California Institute of Technology. Government sponsorship acknowledged. # The Origin, Age, and Stratigraphy of Mars' South Polar Cap Peter Buhler¹ Andrew Ingersoll², Sylvain Piqueux¹, Bethany Ehlmann^{1,2}, and Paul Hayne³ ¹Jet Propulsion Laboratory, California Institute of Technology, ²California Institute of Technology, ³University of Colorado, Boulder LPSC 2019.03.22 #### Background #### What is the RSPC? - 342B17+ "CO₂ ice could not survive in contact with "Throughout the summer, the polar frost low-albedo material." - "Therefore, a residual water-ice cap is much more stable than a solid CO₂ one on Mars in the summertime." - remained at the temperature of solid CO₂." - "Thus Mars appears to have a residual polar cap of CO₂ in the south and one of H₂O in the north." #### OK, it's CO₂, but why at the South Pole? - "[From occultation] it can be seen that the southern residual cap must be higher than the northern one by at least 2 km." - "Any solid CO₂ in the south would be in contact with atmospheric CO₂ at a pressure lower by about 2 mbar than in the north." - "There is no reason to suppose a permanent CO₂ southern cap would be at a systematically lower temperature than the northern one." - "Hence, solid CO₂ deposits in the south would be out of equilibrium and would gradually be transferred to the north...in well under 1000 years." - "Excess solid carbon dioxide is probably present [buried] in the north residual cap." #### Is the RSPC disappearing? "The erosion ... and other observations suggest that the present martian environment is neither stable nor typical of the past." –Malin+ (2001) RSPC mass balance in Mars years 9–31 ~ -0.039% to +0.026% mean atmospheric CO₂ mass per martian year. Viking vs. Curiosity pressure curves: no evidence yet for the 1–20 Pa increase expected from the possible loss of CO₂ from RSPC. #### 3 Outstanding Questions 1. How was the massive CO₂ deposit emplaced with its observed stratigraphy? 3. Why is permanent CO₂ at the south pole (not the north)? #### The massive CO₂ deposit "We find three distinct CO₂ subunits, each capped by a bounding layer (BL)." –Bierson et al. (2016) - "CO₂ ice is deposited over much of the poles during low obliquity periods." - "A remnant is sequestered below a water ice deposit (BL subunits), removing it from contact with the atmosphere." #### Schematic Polar Stratigraphy ## Does the H₂O seal the deposit? - "All of these smaller troughs, depressions, and pits appear to result from erosion and removal of unit A_{A3} [the massive CO₂ deposit], with a strong component of sublimation and collapse." - "The fracturing, not found in other SPLD units, may be a response to continuing unit A_{A3} sublimation after the pits had first formed." #### Is the RSPC an extraordinary accident? - If the massive CO₂ deposit is sequestered from the atmosphere, the same problem of "extraordinary accident" exists. - "A scum layer of dark (low albedo) material may be buried beneath a topmost layer of frost, but as soon as this topmost layer is removed, the dark dust [or H₂O ice] will heat up and any CO₂ beneath it will escape." –Murray and Malin (1973) - But what happens next? # Mars' Pressure History Use a look-up table: Equilibrium Frost Temperature Equilibrium Pressure #### Mars' Pressure History and Stratigraphy #### Long-term pressure history of Mars - Median Amazonian pressure: 1.32 × present - Interquartile range: 0.77 to 1.67 × present ## Why is the permanent CO₂ in the south? "There is no reason to suppose a permanent CO₂ southern cap would be at a systematically lower temperature than the northern one." – Murray and Malin (1973) Emitted thermal flux Absorbed solar flux Condensed CO₂ #### Will perennial northern CO₂ ever exist? Would require significant changes to \bar{A}_{CO_2} and/or ϵ_{CO_2} #### CO₂ protects the SPLD at high obliquity - CO₂ protects the SPLD from ablating. - CO₂ does not protect the NPLD. #### Conclusions 1. How was the massive CO₂ deposit emplaced with its observed stratigraphy? Equilibrated co-evolution with the atmosphere, driven by orbital forcing. H₂O impurities accumulate into lag deposits. 2. Why does the RSPC exist? Negative feedback between surface CO₂ ablation, dark lag formation, and basal CO₂ sublimation. 3. Why is permanent CO₂ at the south pole (not the north)? The albedo/emissivity of the southern CO2 is higher, overwhelming the lower elevation of the northern cap.